Variable Scaling for Time Series Prediction
نویسندگان
چکیده
In this paper, variable selection and variable scaling are used in order to select the best regressor for the problem of time series prediction. Direct prediction methodology is used instead of the classic recursive methodology. Least Squares Support Vector Machines (LS-SVM) are used in order to avoid local minimal in the training phase of the model. The global methodology is applied to the time series competition dataset.
منابع مشابه
Weaning outcome prediction from heterogeneous time series using Normalized Compression Distance and Multidimensional Scaling
In the Intensive Care Unit of a hospital (ICU), weaning can be defined as the process of gradual reduction in the level of mechanical ventilation support. A failed weaning increases the risk of death in prolonged mechanical ventilation patients. Different methods for weaning outcome prediction have been proposed using variables and time series extracted from the monitoring systems, however, mon...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملRisk prediction based on a time series case study: Tazareh coal mine
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کامل